MISSION
This program is aimed at advanced understanding of the theory and principles relating to design, energy conservation and research of methods applicable in different climatic regions throughout the world. Research activities include development of site survey methods, field test instruments, and new computer programs for specialized research methods and energy systems.

CURRICULUM

Fall 1
A. Integrative Graduate Design Studio – ARC 601 6 cu
B. Required Support Courses:
 a. Computer Energy Analysis – ARC 561d 3 cu
 b. Research Methods – ARC 597a 3 cu
 12 cu

Spring 1
A. Graduate Research – ARC 900 6 cu
B. Required Support Course:
 a. Advanced Computer Energy Analysis – ARC 561e 3 cu
C. Elective Courses*:
 a. Special Projects in Architecture – ARC 597b 3 cu
 b. Architecture Advanced Electives 3 cu
 c. Landscape Architecture Electives 3 cu
 d. Electives from other disciplines, as relevant 3 cu
 12 cu

Fall 2
A. Graduate Thesis – ARC 909 or ARC 910 8 cu
B. Elective Courses*
 a. Architecture Advanced Electives 3 cu
 b. Landscape Architecture Electives 3 cu
 c. Electives from other disciplines, as relevant 3 cu
 11 cu
Total 35 cu

* Choice of electives will be made in consultation with faculty advisor

FACILITIES & RESOURCES
Theoretical learning is verified by empirical research in the laboratories of the School of Architecture — especially in the Center for Design & Energy Conservation. Applied research is conducted in the "House Energy Doctor" (HED) program, which specializes in experimental simulation and testing of indoor and outdoor design ideas within specific climatic contexts. Laboratories: Multimedia computer energy simulation and one of the largest solar “Heliodon” (24 feet hemisphere) in the southwest. Outdoor thermal comfort research oasis and advanced data acquisition instrumentation with state-of-the-art wireless sensor technology. Artificial Uniform Overcast Sky Simulator apparatus (1,200 Foot-candle) for daylight testing and photometric measurements in physical models. Information contact: Nader Chalfoun, Professor & Coordinator (chalfoun@u.arizona.edu)